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ABSTRACT

A velocity propagation technique is described that deter-
mines velocity vectors at the points of a contour, based on the
velocities at the endpoints of -.ne contour and the normal
components of velocity along the contour.
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1. Introduction

Image motion can be described by a velocity or optical

flow field V(x,y,t) which gives the direction and speed of

movement of each point (x,y) in an image at time t. A

variety of algorithms have been proposed for determining

this optical flow velocity field. One class of such algori-

thms is based on a simple linear relationship between spa-

tial and temporal intensity gradients [1,2,3]. These gra-

dients are related to the optical flow by the following

equation:

IU + IV +I = 0 (1.1)

or

= - It/IVIl (1.2)

where It is the temporal intensity change at (x,y); I x and I

are the spatial intensity changes along the x and y axes at

time t; IVII is the magnitude of the spatial intensity gradi- v

ent at that point (IVII = /I2+I,2 ); is the normalx y V is he nrmalcompo-

nent of the velocity at that point (along the intensity gra-

dient); and u and v are the components of the velocity in the

x and y directions.

However, it is impossible to determine both u and v or

both Vn and Vt (where Vt is the tangential component) from the

single constraint of eq (1.1) or eq (1.2). So certain further

assumptions about the organization of the velocity field have

to be made. Horn and Schunck [3], for example, proposed the



assumption that the velocity varies smoothly. However, along

boundaries between objects moving with different velocities,

the resulting velocity field is unreliable, because this

*smoothness assumption becomes invalid.

A similar problem (the so-called aperture problem) has

been studied by Batali and Ullman [4] in connection with de-

tecting motion along image contours (zero-crossings of

Laplacians in their work) . The aperture problem is that

* if motion is detected by an element which is small compared

to the overall contour, then the only motion information that

one can obtain is the component perpendicular to the local

orientation of the contour. Motion along the contour cannot be

determined. They suggest that in the case of translation, the

overall motion can be recovered by combining the local motion

- .constraints. Their method appears to rely heavily on the

-assumption that the motion is a simple translation in the

image plane.

Yachida [5] proposed an iterative scheme for propagating

the velocity from some prominent points with given initial

velocity estimates. This scheme was also based on the smooth-

ness assumption of the velocity field.

In this paper we present a local constraint between the4
velocity vectors at the two ends of a small line segment.

This constraint is based on the assumption that all

motions are rigid, and it is used to derive a



propagation procedure which can assign velocity vectors to
0

all points on an image contour, based on the velocity vec-

tors at the endPoints of the contour, and on the normal com-

ponents of the velocity vectors along the contour. Since

the method does not combine information across an edge, it

should succeed in just those cases where a method such as

that of Horn and Schunk [3] would have difficulty.
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2. Theory

2.1 The local constraint and the propagation formula

*5 Suppose the velocity vectors , at the ends of a

* contour A0An are known (see Figure 1). Consider a small

line segment dS along the contour A A . Assuming that

the motion is a rigid motion and is small relative to the

quantization grid and contour curvature, the component

V0 S of V0 , the motion at A0 , parallel to A0A1 must equal

the parallel component VIS of the velocity V1 at A1 :

V0 S V1 S (2.1a)
Os i

or

V0  I V1  dS. (2.1b)

where V0 and V1 are the velocity vectors at the two ends of

the line dS, and dS is the unit vector along dS, the vector

joining A0 to A1 . Rewriting this local constraint (eq. 2.1b)

into component form, we obtain

V•- = (Vn + Vlt) dS

V ln n dS + Vitt - dS (2.2)

where Vln and Vit are the normal component and the tangential

component of the velocity vector V1 respectively, and n and

are the unit vectors in the normal and tangent directions

of the contour at AIV From Figure 1, we see that

V =V sina+V cosa
Os it in

6
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Thus, the tangential component is

t= (V0s - n osa)/sina (2.3)

where a is the angle between the unit vector TS and the

normal vector n at the point Al. We also have y=a-a, where

B is the angle between the x-axis and the normal vector n,

and y is the angle between the x-axis and the line segment dS.

We can propagate the velocity along a contour using eq. (2.3),

because the first projection V0 S is known after the previous

propagation and the normal component Vln can be computed by,

e.g., the methods discussed in [3] or [4]. A procedure simi-

lar to the one described in (3] was used for computing normal

velocity components in the experiments described in the follow-

ing section. Once Vln is computed, VI-=V eje can be obtained

because

V1 = oqln+V.t (2.4)
1 ln lt

e = B - arctan Vlt/Vln

*0
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2.2 Error analysis and a correction technique

From eq. (2.3) the new estimate of the tangent component

• it is based on the previous projection VOS and on the nor-

* mal component Vin at the current propagation point. Differ-

entiating this equation we obtain

av1  3V 3
dVt - + Vn dV + lt da_OsVs aV in

1 ( i - OSCoin

_-1 dV s + cota dVIn + ( - d (2.5)
sin a

Note that the error in Vlt depends on the error in the previous

projection (dVos), the error in the normal component Vin at

the current propagation point (dV n), and the error in the

measurement of the angle a (da).

The result of these various errors is that when the pro-

pagation reaches An , the velocity vector attributed to AN

by the propagation procedure will differ from the velocity vec-

tor originally computed at An. Therefore, at the point An

we compute the error between the propagation velocity estimate

V' and the original velocity vector Vn:
nn

* V VVn '

If this error is less than some tolerance, then this propagation

procedure is stopped at point An; otherwise a correction proce-

dure is applied. If we consider the error AV as having been

accumulated in the previous n steps, then the average velocity

error in one step is

S-?



Ve = Wn /n

th

so we have m-Ve as the velocity error at the mt step and we

propagate this velocity error step by step backward to

correct the estimated velocity vector at each point along

the same contour.
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3. Experiments

3.1 Implementation

We applied the propagation technique to three image sequen-

ces, two of which are displayed in Figure 2. In both sequences,

the object motion is in the image plane.

The propagation technique was implemented as follows:

1) Velocity vectors are first determined at a set of "corner"

points in the first frame by the technique described in [6].

These corner points are marked with crosses in Figures 2 and 6.

2) The velocity vector at the corner is propagated along

the contours that meet at the corner until a second

corner point is encountered. The contours are followed

by a very simple maximum gradient technique. A velocity

vector is not computed at every pixel on the contour,

but only at every kth pixel, to reduce the error in a.

3) When the terminating corner point is reached, the propa-

" gation is stopped and the error velocity vector is com-

puted. If this error is greater than a preset tolerance,

then the error velocity vector is back-propagated along

the same contour.
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3.2 Results

The first example is a simple translation of a toy airplane

(see Figure 2a). In this simple case the comparison of the

velocity vectors before and after the correction processing

is shown in Table 3.1. From the first and third columns of

Table 3.1, it is clear that the errors are accumulated along

the propagation path, and after the correction the values of Vx

and V are very close to the accurate values (in this case,
y

they are -1.0).

The results of the propagation procedure might depend cri-

tically on the direction of propagation - i.e., A0 to An or

vice versa. Experimentally, this has not been a problem.

The results in Table 3.2 show the velocity vectors resulting

from a "top-down" versus "bottom-up" scan of one of the con-

tours in Figure 2a.

In the second case (Figure 2), motion consists of a trans-

lation and a rotation. The computed velocity vectors of the

whole airplane and of two major parts of the airplane are shown

in Figures 3,4, and 5, respectively.

Figure 6 shows a moving tool, and Figure 7 shows the velo-

city vectors along the main contour of this tool.

"*
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No. V V
x y

No. original corrected original corrected

1 -1. 0* -1. 0*
S-100 -- 1 0

S-1 0 -1.0 -1.0 -- 1.0
4 -1 0 -1.0 -1. 0 -1 1
1-, -0 9 -1.0 ....0, 7 -0 9
6 -1. 1 -. i -0 9 - 1

1 -. 0 -I .-0 C -- 1. 0
1 -0.9 -- 1.0 .-0. 7 -1 0

9 -0.9 -- 0 -0. &, -I 0
:1.. -1. 0 -1 

Table 3.1. Velocity vector correction. The starred
values are at the endpoints.

k V x Vy Vx Y Y

1 86 18 -1.0 -1.0 -.1.0 -1.0 a5 1
2 82 1 ,  -0.9 -.0 7 -1.0 -. 0 82 18G

78 21 -0.9 -0.8 -1.0 -1 0 79 20
4 23 -0.8 -0.6 H -1.0 -1.0 76 2
5 72 25 -0. 9 "'0.S 1 1. ""I -1. 0 73- 24

6 69 27 --0. 9 -0. 8H -1 0 -0. 9 70 26
7 66 -1.0 -'0.8 -1. 1 --1 0 6 -7 2

63 31 -0. 9 -0. 8 -0. 7 -0 a 64 31
9 60 33 -1.0 -0.9 i -1.0 --0 9 61 3:3
(1, 57 35 -1. 0 -1. 0 H -0. 9 -0. 7 58 35
I I 54 37 -1.0 --1.-0.0 B -0.6 55 37
12 51 3Q -1.0 -1.0 H -1.0 -1. 0 52 39
13 43 42 -1.0 -1.0 : 40
14 44 44 -1.0 --. 0 --. 0 -- 1. 0 43 45

Table 3.2. Effects of direction of propagation. The first
four columns headed x,y,vx,vy show results
for one direction of propagation, and the last
four columns show results for the other direc-
tion.
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Figure 1. The geometry of the propagation along a
contour in an image.
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Figure 3. Velocity field using the propagation technique
along the contours of the moving airplane
shown in Figure 2.
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Figure 5. The enlarged velocity field of the tail in
Figure 2.
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